Publication of new SFB 1083 Image Brochure

SFB 1083 published a new image brochure introducing the projects and the principle investigators in the third funding period.

Cover of the image brochure of the third funding period. Design by Bosse&Meinhard.

In October 2021, the SFB 1083 updated its image brochure to feature the goals and the focus of the research center in the third funding period. The image brochure gives a general introduction to the research on internal interfaces and portraits the participating researchers mainly for interested students and for the general public.  The numbers on the SFB for the past two as well as the current funding period can also be found in the booklet.

The image brochure (German) can be downloaded here.

A printed version of the image brochure is available upon request.


Sonderforschungsbereich 1083
Philipps-Universität Marburg
Hans-Meerwein-Str. 6
35043 Marburg
Tel.: 06421 28-24223


Polarization Resolved Optical Excitation of Charge-Transfer Excitons in PEN:PFP Cocrystalline Films: Limits of Nonperiodic Modeling– Publication by A2 (Witte)

In their combined experimental and theoretical study published in The Journal of Physical Chemistry Letters, the groups of Caterina Cocchi and Gregor Witte investigated the nature of charge transfer excitons in crystalline PEN:PFP heterostructures.

Absorption and schematic representation of CTX that are only formed in crystalline solids and not in dimers (Image: D. Günder)

Charge-transfer excitons (CTX) at organic donor/acceptor interfaces are considered important intermediates for charge separation in photovoltaic devices. While typically blends are used in real solar cells, their mostly amorphous arrangement prevents microscopic insights into the nature of such CTX states. In contrast, crystalline model systems allow to derive structure-property interrelations and also enable detailed theoretical modeling based on the known molecular arrangement.

In this study Prof. Witte and coworkers characterized the CTX of the prototypical molecular donor/acceptor system pentacene:perfluoropentacene (PEN:PFP). Using template controlled co-crystalline films of different orientation, allowed to precisely determine the polarization of the CTX state from angular-resolved UV/Vis absorption spectroscopy. Complementary, this co-crystalline system was analyzed theoretically in the group of Prof. Cocchi (Oldenburg) by first-principles many-body calculations and solving the Bethe-Salpeter equation, which confirms that the lowest-energy excitation is a true CTX state with a polarization along the molecular stacking direction. In addition, it was shown that analogous simulations performed on bimolecular clusters are unable to reproduce this state, which is ascribed to the lack of long-range interactions and wave-function periodicity in these calculations and represents an important finding for the description of molecular donor/acceptor systems.


D. Günder, A.M. Valencia, M. Guerrini, T. Breuer, C. Cocchi, G. Witte
Polarization Resolved Optical Excitation of Charge-Transfer Excitons in PEN:PFP Cocrystalline Films: Limits of Nonperiodic Modeling
J. Phys. Chem. Lett. 12 (2021) 9899 DOI:10.1021/acs.jpclett.1c02761


Prof. Dr. Gregor Witte
Philipps-Universität Marburg
SFB 1083 project A2
Tel.: 06421 28-21384

Ultrafast charge transfer in twisted TMDC heterostructures – Publication by B5 (Höfer/Mette)

In a new publication in ACS Nano, Zimmermann and coworkers investigate ultrafast charge-transfer processes in twisted heterostructures of transition metal dichalcogenides by means of time-resolved SHG imaging microscopy.

Two-dimensional heterostructures of transition metal dichalcogenides (TMDC) represent very well-defined and at the same time highly versatile model systems of van-der-Waals interfaces. Many material combinations feature a type-II band alignment, which can separate photoexcited electrons and holes into different layers through ultrafast charge transfer leading to the formation of so-called interlayer excitons. Since the coupling within these structures depends considerably on the layer stacking, a strong influence of the interlayer twist on the ultrafast charge-transfer, recombination and other properties of the interlayer excitons has been expected.

In their study, Zimmermann and coworkers have employed time- and polarization-resolved second-harmonic imaging microscopy to investigate the ultrafast charge-carrier dynamics across the MoS2/WSe2 heterostructure interface for different stacking configurations. The excellent time resolution made it possible to identify stacking-dependent differences in the ultrafast charge transfer that were not accessible in previous approaches. For lower excitation energies of 1.70 eV, ultrafast electron transfer from WSe2 to MoS2 is found to depend considerably on the stacking angle and the transfer time is reduced by a factor of seven when going from a larger rotational mismatch towards 2H-stacking. At higher excitation energies, hole transfer processes from MoS2 to hybridized states at the Γ-point and to the K-points of WSe2 have to be considered in addition. The respective decay dynamics, however, does not show a significant dependence on the stacking angle indicating that radiative recombination of indirect Γ-K excitons becomes the dominant decay route for all samples.

The pump-probe SHG measurements upon 1.70-eV photoexcitation reveal a strong stacking-dependence of the ultrafast electron transfer (ΔtCT) from WSe2 to MoS2. At higher excitation energy of 1.85 eV, the observed decay dynamics indicate radiative recombination (τ) of indirect Γ-K excitons independent of the stacking configuration.


J.E. Zimmermann, M. Axt, F. Mooshammer, P. Nagler, C. Schüller, T. Korn, U. Höfer, G. Mette
Ultrafast Charge-Transfer Dynamics in Twisted MoS2/WSe2 Heterostructures
ACS Nano (2021) DOI:10.1021/acsnano.1c04549


Dr. Gerson Mette
Philipps-Universität Marburg
SFB 1083 subproject B5
Tel.: 06421 28-24123