Obituary for Prof. Dr. Stephan W. Koch – Nachruf für Prof. Dr. Stephan W. Koch

Die Mitglieder des Sonderforschungsbereichs 1083 „Struktur und Dynamik innerer Grenzflächen“ trauern um Prof. Dr. Stephan W. Koch, der im September 2022 im Alter von 69 Jahren verstorben ist.

Foto: Tim van de Bovenkamp; Copyright: SFB 1083

Stephan W. Koch promovierte 1979 in Frankfurt und war von 1977 bis 1984 wissenschaftlicher Mitarbeiter am Institut für Theoretische Physik der Universität Frankfurt, an dem er auch bereits 1983 habilitierte. Nach drei Jahren als Stipendiat der F. Thyssen-Stiftung und der DFG im Rahmen eines Heisenberg-Stipendiums ging er 1986 als Associate Professor an das Physics Department and Optical Sciences Center der University of Arizona in Tucson, wo er 1989 zum Full Professor ernannt wurde. 1993 kam er dann nach Marburg und übernahm in Nachfolge von Otfried Madelung und Stefan Schmitt-Rink den Lehrstuhl für Theoretische Festkörperphysik an der Philipps-Universität Marburg, wobei er weiterhin Adjunct Professor an der University of Arizona blieb. Diesen beiden Stationen blieb er bis zu seiner Pensionierung treu.

Seine Forschungsschwerpunkte lagen auf dem Gebiet der theoretischen Festkörperphysik. Besonders interessierten ihn hier die theoretischen Grundlagen der Wechselwirkung von Licht mit Materie in Halbleitermaterialien sowie in Laserstrukturen und Mikro-Resonatoren.

Stephan W. Koch war ein herausragender, international hoch angesehener Wissenschaftler. Durch seine Arbeiten zur Vielteilchenphysik und den optoelektronischen Eigenschaften von Halbleitern trug er maßgeblich zum heutigen Verständnis von Festkörpern und insbesondere Halbleiternanostrukturen bei. Für seine Leistungen wurde er 1997 mit dem Leibniz-Preis der Deutschen Forschungsgemeinschaft (DFG) sowie 1999 mit dem Max-Planck-Forschungspreis der Alexander-von-Humboldt-Stiftung und der Max-Planck-Gesellschaft ausgezeichnet.

Stephan Koch hat die Forschungslandschaft der Marburger Physik entscheidend mitgeprägt. Von 1995 bis 2001 leitete er den erfolgreichen SFB 383 „Disorder on mesoscopic scales“ und war seit 2013 Mitglied des SFB 1083 „Structure and dynamics of internal interfaces“.

Stephan Koch verstand es, seine vielen Schülerinnen und Schüler für die Halbleiterphysik zu begeistern. Viele von Ihnen sind heute an Hochschulen und Forschungseinrichtungen tätig.

Mit großer Dankbarkeit und Anerkennung werden wir uns an ihn als einen stets aufgeschlossenen Kollegen erinnern, der in seinem gesamten Schaffen immer wieder neue Impulse gegeben und Zeichen gesetzt hat.

Unser tiefes Mitgefühl und unsere Anteilnahme gelten seiner Ehefrau und seinen Angehörigen.

Wir werden ihn vermissen.

 

Formation of Moiré Interlayer Excitons in Space and Time – Publication by B9 (Malic) in Nature

A large research team including Ermin Malic and coworkers observed the formation of a “dark” moiré interlayer exciton for the first time

A large number of so-called optically dark excitons form between two twisted layers of tungsten diselenide (top) and molybdenum disulfide (bottom) after optical excitation.

Atomically thin structures made of two-dimensional semiconductor materials are promising candidates for future devices in electronics, optoelectronics and photovoltaics. The properties of these semiconductors can be controlled by stacking atomically thin layers on top of each other. However, the angle of rotation in the structure of the semiconductors can be adjusted as desired, and this angle of rotation is of interest for the production of novel solar cells. Typical experimental approaches have only indirect access to the moiré interlayer excitons and are blind to the ‘dark’ excitons.

An international research team including Ermin Malic and coworkers from the SFB succeeded in directly visualizing so-called dark moiré interlayer excitons by using time-resolved ARPES measurements combined with microscopic many-particle theory. The researchers show how the time-resolved momentum microscopy provides deepest microscopic insights into these technologically relevant questions.

These results not only provide a fundamental insight into the formation of dark moiré interlayer excitons, but also open up a new perspective to study the optoelectronic properties of these new and fascinating materials, e.g., the signature of the moiré potential and the influence of the combined properties of the two twisted semiconductor layers.

For further information, please see the press release by the university of Göttingen (in German).

Publication

D. Schmitt, J.P. Bange, W. Bennecke, A.A. Al Mutairi, G. Meneghini, K. Watanabe, T. Taniguchi, D. Steil, D.R. Luke, R.T. Weitz, S. Steil, G.S.M. Jansen, S. Brem, E. Malic, S. Hofmann, M. Reutzel, S. Mathias
Formation of moiré interlayer excitons in space and time
Nature 608 (2022) 499 DOI:10.1038/s41586-022-04977-7

Contact

Prof. Dr. Ermin Malic
Philipps-Universität Marburg
SFB 1083 project B9
Tel.: 06421 28-22640
EMAIL

Topological Stone–Wales Defects Enhance Bonding and Electronic Coupling at the Graphene/Metal Interface – Publication by A4 (Gottfried) and A6 (Tonner) in ACS Nano

Benedikt Klein and coworkers of SFB 1083, together with external collaborators, have gained new insight into interfacial interactions of Stone-Wales graphene defects by using molecular models.

Graphene is an astonishing two-dimensional material with diverse and technologically important properties. However, these properties are heavily dependent on topological defects, which have a direct impact on the graphene/metal interface. A common defect is the Stone-Wales (SW) defect, consisting of two five- and two seven-membered rings resulting in a non-alternating bonding situation.  Researchers of the SFB 1083 projects A4 (Gottfried) and A6 (Tonner) investigated the interface between a SW defect and a metal by mimicking the defect with the molecule azupyrene. Pyrene was used as a model for defect-free graphene of the same size as azupyrene. The experiments were complemented by extensive modelling of the graphene-embedded defects.

Figure: Graphene/metal interface with typical topological defect. The local interaction of a topological S–W graphene defect with a metal surface is mimicked by azupyrene, which allow the application of a wide range of experimental techniques. Copyright 2022 American Chemical Society.

In the present work, it was shown by a multi-technique approach (XPS/UPS, NIXSW, NEXAFS, TPD, LT-AFM, DFT) that the embedded defects, modelled by azupyrene, undergo enhanced bonding and electron transfer with a Cu(111) surface. This indicated by increased bond energies of 68 kJ/mol, by 0.9 Å reduced bond distances and enhanced charge transfer. The consistent experimental results were corroborated by DFT calculations.

The defect-induced enhanced electronic coupling at the graphene/metal interface is expected to have significant impact on the performance of (opto-)electronics, e.g., by increasing charge injection rates. Tailoring the topological structure of graphene layer may result in the development of new or imprived devices.

Publication

B.P. Klein, A. Ihle, S.R. Kachel, L. Ruppenthal, S.J. Hall, L. Sattler, S.M. Weber, J. Herritsch, A. Jaegermann, D. Ebeling, R.J. Maurer, G. Hilt, R. Tonner-Zech, A. Schirmeisen, J.M. Gottfried
Topological Stone–Wales Defects Enhance Bonding and Electronic Coupling at the Graphene/Metal Interface
ACS Nano (2022) DOI:10.1021/acsnano.2c01952

Contact

Prof. Dr. J. Michael Gottfried
Philipps-Universität Marburg
SFB 1083 project A4
Tel.: 06421 28-22541
EMAIL