Interfacial synthesis of novel phthalocyanine dyes – Publication by A4 (Gottfried), A6 (Tonner) & A7 (Sundermeyer)

In their study published in Nature Communications, the authors from three SFB-projects with expertise in interface chemistry, organometallic synthesis, and theoretical chemistry, jointly publish their research into template-controlled interfacial synthesis of unprecedented extended phthalocyanine dyes.

Interfacial template approach: control over the topology of the reaction products is achieved by using differently-sized metal templates in 2D confinement. (after publication-Fig. 1)

Phthalocyanines possess unique optical and electronic properties and thus are widely used in (opto)electronic devices, coatings, photodynamic therapy, etc. Extending the π-conjugation of phthalocyanine dyes, while synthetically challenging, has the potential to produce desirable new molecular materials.

Here, Dr. Qitang Fan and coworkers use a templated interface approach to synthesize several extended phthalocyanine derivatives from the same building block, including an unprecedented lanthanide superphthalocyanine and an open-chain polycyanine (fig. left). The former represents the first superphthalocyanine without uranium center, while the latter provides an intriguing model for an organic semiconducting polymer with an absorption band in the visible range. Detailed study of these new materials by scanning tunneling microscopy, photoemission spectroscopy, and density functional theory calculations (fig. below), reveal their chemical structure and mechanical as well as electronic properties.

Orbitals: Lowest unoccupied molecular orbitals of Fe-NPc and Gd-SNPc, lowest unoccupied crystal orbital of polycyanine, from density-functional theory calculation.

See also natureresearch’s “Behind The Paper”-contribution by Michael Gottfried on “Synthesis in flatland: rings and chains grown on surfaces”.


Q. Fan, J.-N. Luy, M. Liebold, K. Greulich, M. Zugermeier, J. Sundermeyer, R. Tonner, J.M. Gottfried, Template‐controlled on‐surface synthesis of a lanthanide supernaphthalocyanine and its open‐chain polycyanine counterpart, Nature Commun. 10 (2019) 5049DOI:s41467-019-13030-7


Prof. Dr. Michael Gottfried
Philipps-Universität Marburg
SFB 1083 project A4
Tel.: 06421 28 22541